
Consistent shakedown theorems for materials with
temperature dependent yield functions

Guido Borino*

Dipartimento di Ingegneria Strutturale & Geotecnica, DISeG, UniversitaÁ di Palermo, Viale delle Scienze, 90128 Palermo, Italy

Received 25 September 1998; in revised form 16 April 1999

Abstract

The (elastic) shakedown problem for structures subjected to loads and temperature variations is addressed in the
hypothesis of elastic±plastic rate-independent associative material models with temperature-dependent yield

functions. Assuming the yield functions convex in the stress/temperature space, a thermodynamically consistent
small-deformation thermo-plasticity theory is provided, in which the set of state and evolutive variables includes the
temperature and the plastic entropy rate. Within the latter theory the known static (Prager's) and kinematic

(KoÈ nig's) shakedown theorems Ð which hold for yield functions convex in the stress space Ð are restated in an
appropriate consistent format. In contrast with the above known theorems, the restated theorems provide dual
lower and upper bound statements for the shakedown limit loads; additionally, the latter theorems can be expressed

in terms of only dominant thermo-mechanical loads (generally the vertices of a polyhedral load domain in which the
loadings are allowed to range). The shakedown limit load evaluation problem is discussed together with the related
shakedown limit state of the structure. A few numerical applications are presented. # 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The extension of the classical shakedown theorems to thermal loadings and materials with
temperature-dependent yield stress was achieved by Prager (1956) for Melan's static theorem, and by
KoÈ nig (1982a, 1982b) for Koiter's kinematic theorem Ð though the latter author quotes Rozemblum
(1965) as a previous contributor to this matter. Both extensions considered perfectly plastic materials
with yield functions convex in the ss stress space for every temperature y. In contrast with classical
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shakedown theorems, related to temperature-independent yield stress, these two extended theorems
exhibit the following undesirable drawbacks:

1. In general, except in the case of linearly dependent yield-stress, they do not constitute dual lower and
upper bound theorems for the shakedown limit load whenever the temperature variations are
nonstationary and thus (possibly combined with the mechanical loads) are susceptible to
ampli®cation.

2. In general, except in case of fully convex yield functions, they cannot be simpli®ed by considering, in
place of all load/temperature combinations, only the discrete set of dominant loads; that is, the
loading conditions represented by the vertices of the polyhedral load/temperature domain within
which the loads and temperature are allowed to range.

It is the purpose of the present paper to show that, if the yield function is convex in the stress/
temperature space, the two shakedown theorems can be cast in consistent forms, i.e. free from the above
drawbacks, like the classical shakedown theorems. To this purpose, within the framework of
thermodynamics of internal variables, suitable thermo-plasticity ¯ow laws will be introduced in which
the temperature and the `plastic entropy' rate will play the role of further state and evolutive variables,
respectively.

From experimental data (KoÈ nig, 1987; Hansen and Schreyer, 1994), the yield stress k=k(y ) is known
to decrease with increasing temperature y and to exhibit a concave shape for a rather wide range of y
(approximately, ÿ108C < y < 6008C for many metal and alloys). It must be remarked that in order to
maintain the problem inside the standard thermo-mechanical formulations, the maximum admissible
temperature that the material can su�er is always well below the melting temperature, typically no more
than one-third of it (Lemaitre and Chaboche, 1985). For modest temperature variations, the hypothesis
of temperature-independent, or linearly temperature-dependent, yield stress is usually considered
adequate. For more important temperature variations, the above mentioned hypothesis may be the
source of unacceptable errors in elastic±plastic analysis, and it then may be more appropriate to assume
k(y ) to be concave, hence f(ss, y )=f(ss)ÿk(y ) is convex in the (ss, y ) space. Considering that the yield
stress k(y ) is concave for many structural materials, the study of shakedown theory under the general
assumption of yield function being convex in the stress/temperature space turns out to be of interest
both from the theoretical and practical viewpoints.

The plan of the paper is as follows. In Section 2, the two mentioned extended shakedown theorems
are reviewed and their drawbacks discussed. Section 3 is devoted to the thermo-plastic internal-variable
material model and to the related associative thermo-plastic ¯ow laws which are expressed in terms of
plastic strain rates, kinematic internal variables rates and plastic entropy rate. The thermodynamic
consistency of these ¯ow laws is partially discussed in Section 3, but mainly in Section 4, where
arguments of the thermodynamics of internal variables are developed with the conclusion that, at least
within small-deformation and quasi-static processes, all coupling thermo-mechanical e�ects can be
disregarded. The shakedown problem is then posed in Section 5 and the related (consistent) static and
kinematic theorems are addressed in Sections 6 and 7, respectively, showing their di�erences with respect
the existing ones, as well as the cases in which these di�erences disappear. Section 8 is devoted to the
analysis of the shakedown limit state produced by the shakedown limit load, for which static and
kinematic approaches are presented. A few numerical applications are presented in Section 9. The
conclusion are drawn in Section 10.

2. Review of existing shakedown theorems

For later use, the two extended shakedown theorems mentioned in Section 1 are reported hereafter
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with reference to a continuous solid body of elastic, perfectly plastic material, which is characterized by
a yield function f(ss, y ) R 0 being convex in the ss stress space for every y value, the body being
subjected to quasi-static loads and temperature variations. The plain word `shakedown' is used to mean
elastic shakedown; that is, to mean that the body will eventually respond elastically to any subsequent
loads and temperature variations within the given load/temperature domain, after a transient elastic±
plastic phase during which some limited amount of plastic strain has been produced (see, e.g. Koiter,
1960; KoÈ nig, 1987; Gokhfeld and Cherniavsky, 1980; Halphen, 1979).

2.1. Static shakedown theorem

Shakedown occurs if, and only if, there exists some time-independent self-stress ®eld, ÃsssR, such that
the stresses resulting from the superposition of this ÃsssR with the thermo-elastic stress response, sssE, to
the loads and temperature variations in any potentially active load/temperature path, nowhere violates
the temperature-dependent yield condition, i.e.

f �sssE � ÃsssR, y�R0 in V, 8t 2 �0, tf�, �1�
where V denotes the body's domain, t the ordering time-like parameter along an arbitrary load/
temperature path, 0R tR tf , in the given load/temperature domain, tf > 0 is any subsequent time

2.2. Kinematic shakedown theorem

Shakedown occurs if, and only if, for any potentially active load/temperature path, 0 R t R tf , the
inequality�

V

�tf
0

�
D�Çeeepc, y� ÿ sssE:Çeeepc

�
dt dVr0 �2a�

is satis®ed with arbitrary kinematically admissible (k.a.) plastic strain rate cycles, Çeeepc, that is, resulting
into a self-compatible ®eld Deepc, i.e.

Deeepc: �
�tf
0

Çeeepc dt � rsuc in V, uc � 0 on Su: �2b�

The symbol := means equality by de®nition, D is the temperature-dependent dissipation function
(related to f, hence convex for every y value), Hs is the symmetric part of the gradient operator H, uc is a
time-independent displacement ®eld, Su is the part of the boundary surface S=@V, where the
displacements are speci®ed.

The above theorems exhibit the drawbacks described in points 1. and 2. of Section 1. The latter
drawback is quite obvious, but the former needs further explanation. To this purpose, let the loads and
the temperature variations be speci®ed to within a scalar-valued multiplier b > 0, such that sssE � b ÅsssE

and y � b�y, where ÅsssE is the thermo-elastic stress response to the reference loads and temperature
variations �y: The shakedown safety factor, bsh, can thus be computed as the maximum multiplier b for
which shakedown occurs; that is, for which the following conditions hold:

. The static-type condition

f �b ÅsssE � ÃsssR, b�y�R0 in V, 8t 2 �0, tf�, �3�
to be satis®ed for every potentially active load/temperature path and some time-independent self-stress
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®eld, ÃsssR;
. The kinematic-type condition�

V

�tf
0

�D�Çeeepc, b�y� ÿ b ÅsssE:Çeeepc� dt dVr0, �4�

to be satis®ed for every potentially active load/temperature path and for every k.a. plastic strain rate
cycle, Çeeepc:

Obviously, any b complying with the static-type condition (3) is a lower bound to bsh. On the
contrary, the kinematic-type condition (4) which holds for any b R bsh, rewritten for b=bsh and
considering only those nontrivial k.a. plastic strain rate cycle for which the reference external work is
positive, i.e.�

V

�tf
0

ÅsssE:Çeeepc dt dV > 0 �5�

provides the inequality

bshR
�
V

�tf
0

D
ÿ
Çeeepc, bsh

�y
�

dt dV

��
V

�tf
0

ÅsssE:Çeeepc dt dV: �6�

This inequality is not a proper upper bound to bsh.
An exception to the latter result occurs for materials with a yield function of the form

f=f(ss)ÿk0(1ÿcy ) R 0, where f(ss) is convex and homogeneous to degree one, k0 is the yield stress at
the reference temperature y=0 and c>0 is some material constant. In this case, it is D � �1ÿ cy�D0�Çeeep�
where D0�Çeeep� denotes the dissipation function at y=0 (KoÈ nig, 1982a, 1982b), and Eq. (4) can then be
transformed as�

V

�tf
0

�
D0�Çeeepc� ÿ b

�
ÅsssE:Çeeepc � c�y D0�Çeeepc�

�	
dt dVr0, �7�

which, when written for b=bsh, is able to provide proper upper bounds to bsh. Additionally, f being
linearly dependent on y and thus convex also with respect to y, it can be stated that none of the
drawbacks mentioned in Section 1 arise for the considered class of materials. However, this is not the
case in the general case of materials with yield functions being nonconvex with respect to the
temperature. In the following, the above shakedown theorems will be suitably restated such as not to
exhibit the named drawbacks.

3. Inelastic material behavior

A rate-independent associative material model is considered, with a yield function f(ss, ww, y ) R 0,
where ww denotes the dual (static) internal variables, f is, by hypothesis, smooth and convex in the space
of all its arguments and y=0 denotes a reference ambient temperature. Viscous e�ects are disregarded
for simplicity's sake, which is reasonable for temperatures below certain limits. The material behavior is
described in the space of the state variables (ss, ww, y ) by expressing the evolutive laws, or thermo-plastic
yielding laws, in analogy with the analogous laws for isothermal process (see e.g. Lubliner, 1990), as
follows:

G. Borino / International Journal of Solids and Structures 37 (2000) 3121±31473124



Çeeep � _l
@ f

@sss
, ÿ Çxxx � _l

@f

@www
, ÇZZZp � _l

@ f

@y
, �8a�

f �sss, www, y�R0, _lr0: _l f �sss, www, y� � 0: �8b�
Here, _l is the consistency (or plastic activation) coe�cient accounting for the loading/unloading rule

through Eqs. (8b). The instantaneous deformation mechanism is described by the set of evolutive
variables, �Çeeep, Çxxx, _Zp�, including the plastic strain rates, Çeeep, the (kinematic) internal variable rates, Çxxx and
the plastic entropy rate density, _Zp: The energy dissipated per unit volume reads

D: � sss:Çeeep ÿ www � Çxxx� y_Zpr0, �9�

which is the intrinsic thermo-mechanical dissipation density.
Note that provided f is nonlineraly dependent on ss and y, Eqs. (8a) and (8b) can be uniquely solved

with respect to the state variables ss, ww and y, expressing them in terms of a given nontrivial mechanism
�Çeeep, Çxxx, _Zp�, such that D in Eq. (9) turns out to be a one-degree homogeneous function of the evolutive
variables and to possess, for any nontrivial mechanism, the following properties:

sss � @D

@ Çeeep , www � ÿ@D
@ Çxxx

, y � @D

@ _Zp : �10�

Due to the convexity of f, the following Drucker-type (Drucker, 1960) inequality holds, i.e.

�sssÿ sss��:Çeeep ÿ �wwwÿ www�� � Çxxx� �yÿ y��_Zpr0, �11�

for any sets (ss, ww, y ) and �Çeeep, Çxxx, _Zp� corresponding to each other through the constitutive equations
(Eqs. (8a) and (8b)), as well as for any, plastically admissible set (ss�, ww�, y�), i.e. such that f(ss�, ww�, y�)
R 0. The equality sign holds in Eq. (11) if, and only if, Çeeep � 0, Çxxx � 0 _Zp � 0 (in which case, ss�, ww� and
y�, may di�er from ss, ww and y, and then the mechanism Çeeep, Çxxx, _Zp may be nontrivial).

Eq. (11) is equivalent to a Maximum Intrinsic Thermoplastic Dissipation Theorem, extension to the
present contest of the classical one (Hill, 1950); that is:

D�Çeeep, Çxxx, _Zp� � max
�s, w, y�

sss:Çeeep ÿ www � Çxxx� y_Zp

subject to:

f �sss, www, y�R0, �Çeeep, Çxxx, _Zp fixed �: �12�
It can be shown that the Kuhn±Tucker conditions of the maximum problem in Eq. (12) coincide with

Eqs. (8a) and (8b) and are not only necessary, but also su�cient conditions, but this point is skipped for
brevity.

It can be easily checked that the nonnegativity of D in Eq. (9) is always guaranteed. In fact, using Eq.
(8a), we can write:

D � _l
�
sss:
@ f

@sss
� www � @ f

@www
� y

@f

@y

�
r_lf �sss, www, y�, �13�

where the inequality
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sss:
@f

@sss
� www � @f

@www
� y

@ f

@y
rf �sss, www, y� �14�

due to the convexity of f has been used. Finally, by the complementarity condition _lf � 0 in Eq. (8b),
we have Dr0 for any arbitrary deformation mechanism.

The consistency of the above constitutive equations from the thermodynamics point of view deserves
further discussion, which will be done in the next section. This is devoted to the thermodynamic aspects
of the material constitutive behavior and to a possible justi®cation of the nonclassical concept of `plastic
entropy', which appeared in the literature quite recently (Simo and Miehe, 1992; Pantuso and Bathe,
1997; Svedberg and Runesson, 1997; Borino and Polizzotto, 1997a, 1997b). The main point, as shown in
detail in the next section, is that the entropy production is sum of two contributions, one related to the
independent state variable, i.e. the `reversible' entropy Z e, which appear in the Helmholtz free energy
function and then in the state laws, the other, the plastic entropy Z p is related to the yield stress
variation through the temperature, the rate of this last term multiplied by its dual variable temperature
gives a contribution to the thermo-mechanical dissipation function.

4. Thermodynamic considerations

Let the material of Section 3 be further considered in the context of small deformations and let the
existence of a speci®c internal energy, u=u(eee, Z e, xx), be postulated. u depends on the elastic strains, eee,
the `reversible' entropy, Z e, (i.e. the entropy entering the state equations) and the internal variables, xx.
The total entropy, in fact, is assumed to be composed of two contributions, that is

_Z � _Ze � y
rT

_Zp, �15�

where T=T0+y is the absolute temperature, r is the mass density and Z p is the `plastic entropy'
entering the thermo-plastic constitutive equations. Note that _Zp is multiplied by the ratio y/rT in Eq.
(15) in order to transform _Zp (which is referred to the relative temperature y and the unit volume) into
the `irreversible' entropy _Zi � y_Zp=rT, which, like _Ze, is referred to the absolute temperature T and the
unit mass. The ®rst thermodynamics principle reads:

r _u � sss:Çeee� rÿ div q, �16�
where Çeee � Çeeee� Çeeep is the total strain rate, r the heat source per unit volume and q the heat ¯ux per unit
area (see, e.g. Germain et al., 1983; Lemaitre and Chaboche, 1985).

Introducing the Helmholtz free energy, c=c(eee, T, xx), related to u by c=uÿTZ e, as well as the
external entropy production, _Zext, i.e.

_Zext: �
1

r

�
r

T
ÿ div

�
q

T

��
, �17�

we can rearrange Eq. (16) to express the internal entropy production, i.e. _Zint� _Zÿ _Zext, as follows

rT_Zint � sss:Çeeeÿ r _cÿ rZe _T� y_Zp ÿ q

T
� rTr0, �18�

where the nonnegativity sign is a consequence of the second thermodynamics principle.
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Eq. (18) is equivalent to the Clausius±Duhem inequality, with which it coincides for _Zp � 0:
Developing the time derivative _c, Eq. (18) takes on the form:

rT_Zint �
�
sssÿ r

@c
@eeee

�
:Çeeee ÿ r

�
Ze � @c

@T

�
_T� sss:Çeeep ÿ r

@c
@xxx
� Çxxx� y_Zp ÿ q

T
� rTr0: �19�

Since the latter inequality holds for any type of deformation and heat ¯ow mechanisms, a classical
reasoning enables us to write the relevant state equations, i.e.

sss � r
@c
@eeee

, Ze � ÿ@c
@T

, www: � r
@c
@xxx

�20�

(the third of which is a mere de®nition), as well as the relation

rT_Zint � sss:Çeeep � y_Zp ÿ www � Çxxxÿ q

T
� rT � D�Dyr0, �21�

where Dr0 is recognized as the intrinsic thermo-mechanical dissipation density of Eq. (9), and

Dy: � ÿq

T
� rTr0 �22�

is the thermal di�usion dissipation density. Eq. (21) conforms to a classical result of thermodynamics;
namely, the internal entropy production in any deformation and heat ¯ow mechanisms is determined by
the related total dissipation density, including the contribution from the plastic entropy. The total
entropy rate, _Z� _Zint� _Zext, can be obtained using Eqs. (21) and (17). After some easy mathematics, one
can write the entropy balance equation as

rT_Z � D� rÿ div q: �23�
Let the Helmholtz free energy be assumed in the form:

rc � 1

2
eeee:E:eeee �C�xxx� ÿ eeee:b�Tÿ T0� ÿ rCvT

�
ln

T

T0
ÿ 1

�
, �24�

where E is the (constant) elastic moduli positive±de®nite fourth-order tensor (with its usual symmetries),
b is the thermal moduli second-order tensor, Cv is the heat capacity per unit mass at constant volume
and ®nally C(xx) is the hardening potential, by hypothesis smooth and convex. By Eq. (20) we have:

sss � E:eeee ÿ b�Tÿ T0�, �25a�

www � www�xxx�: � @C
@xxx

�25b�

and

Ze � Cv ln
T

T0
� 1

r
b:eeee: �25c�

These (considering r as being constant in time) can be rewritten in an equivalent rate form, i.e.

Çsss � E:Çeeee ÿ b _T �26a�
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Çwww � H�xxx� � Çxxx �26b�
and

_Ze � Cv
_T=T� �1=r�b:Çeeee: �26c�

where H(xx)=@2C/(@xx 
 @xx) is the (positive±de®nite) hardening moduli tensor. At this point, introducing
(for simplicity's sake) the Fourier equation for a thermally homogeneous and isotropic medium, i.e.
q=ÿkHT, substituting the latter into Eq. (23), remembering Eq. (15) and using the identity Çeee � � Çeeee�
Çeeep, we can write the heat conduction di�erential equation as:

kr2T� r�DM ÿ Tb:Çeeee � rCv
_T, �27�

where H2 is the Laplacian di�erential operator and DM is the intrinsic mechanical dissipation, i.e.

DM � Dÿ y_Zp � sss:Çeeep ÿ www � Çxxx: �28�
Eq. (27) shows that heat conduction is not directly in¯uenced by the plastic entropy rate.

Eq. (27), written for the body's domain V with the appropriate boundary conditions on @V, cannot be
solved to obtain the temperature ®eld evolution without considering the mechanical structural problem
with which it is coupled through the thermo-plastic evolutive variables as well as the elastic strain and
temperature rates. However, as usual in the framework of small deformations and quasi-static problems
(see, e.g. Boley and Weiner, 1960), all these coupling e�ects can be disregarded, such that Eq. (27)
simpli®es considerably, i.e.

kr2y� r � 0: �29�
Thus, the temperature ®eld can now be evaluated independently of the structural mechanical problem,

obtaining y(x, t ), which can thus be considered known for the solution of the structural problem. We
conclude this section by stating:

1. the thermo-plastic constitutive equations of Eq. (3), devised to cope with materials with temperature-
dependent yield functions, exhibit a satisfactory thermodynamic consistency, and

2. the usual procedure by which the temperature ®eld, y(x, t ), is viewed as assigned in the framework of
quasi-static small-deformation structural problems, can also be adopted in the case of materials
obeying the above constitutive equations.

5. The structural shakedown problem

Let the solid body (or structure) of Section 2 be made of a material obeying the constitutive equations
of Eq. (3), as well as Eqs. (25a) and (25b) or Eqs. (26a) and (26b), and let it be subjected to loads and
temperature variations which vary in time in a quasi-static manner. The loads in general include body
forces speci®ed in V and surface forces speci®ed on StWS. Impressed displacements speci®ed on Su=S/
St may also be included for greater generality. The thermo-mechanical loadings depend on a set of
independent parameters, say Q=(QL, Qy ), QL for the mechanical loads, Qy for the thermal loading. QL

and Qy are allowed to vary arbitrarily within the (closed) domains PL and Py, respectively, these
domains being assumed Ð without loss in generality Ð as being convex hyperpolyhedra of, respectively,
mL and my vertices. Thus, Q is allowed to range within P=PL � Py, which is a convex
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hyperpolyhedron with m=mLmy vertices. The vectors Qi, all i $ I(m ):={1, 2,..., m }, which specify the
vertices of P, are referred to as the dominant (or basic) thermo-mechanical loads.

Any Q inside P can be represented (Polizzotto et al., 1991) as:

Q �
Xm
i�1

giQi, �30�

where the coe�cients gi must satisfy the admissibility conditions

gir0 8i 2 I�m� and
Xm
i�1

gi � 1: �31�

If the coe�cients gi vary in all possible ways complying with Eq. (31), Q will then describe the entire
domain P. Additionally, if the coe�cients gi are taken as time functions, i.e. gi=gi(t ), tr0, and satisfy
Eq. (31) for every t, then Eq. (30) will generate a load path Q(t ) inside P, that is a potentially active
load path, or Admissible Load History (ALH). Let ssE denote the thermo-elastic stress response to Q,
that is the (®ctitious) elastic response of the body when the existence of the yield surface, f(ss, ww, y )=0,
is ignored. Denoting by sssE

i �x� the thermo-elastic stress response to the dominant load Qi � �QL
i , Qy

i �,
with the associated basic temperature ®eld yi(x), we can write

sssE�x, t� �
Xm
i�1

gi�t�sssE
i �x� �32a�

and

y�x, t� �
Xm
i�1

gi�t�yi�x� �32b�

to designate (by Eq. (32a)) the thermo-elastic stress response to the load Q � Pm
i�1gi�t�,Qi, which

includes the temperature ®eld, y(x, t ), of Eq. (32b).
The actual inelastic response of the structure to any assigned ALH Q(t ), tr0, can, in principle, be

computed using the relevant constitutive equations, as well as the equilibrium and compatibility
equations. But the main question of our interest here is whether shakedown can be predicted to occur in
the considered loading conditions. The shakedown theorems are criteria to ascertain whether shakedown
occurs or not, (see, e.g. Koiter, 1960; KoÈ nig, 1987; Gokhfeld and Cherniavsky, 1980). In the following
sections, the classical static and kinematic shakedown theorems will be restated to cope with the present
material model. To this purpose, the load description given in the ®rst part of this section, with the
representation in Eqs. (32a) and (32b), will be helpful.

6. Consistent static shakedown theorem

For the structure considered in Section 5, the following can be stated:

6.1. Consistent static shakedown theorem

A necessary and su�cient condition in order that shakedown occurs in a structure subjected to
thermo-mechanical loads allowed to range within a (convex) polyhedral domain P with dominant loads
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Qi, i $ I(m ), is that there exist a time-independent self-stress ®eld ÃsssR, and a time-independent dual
internal variable ®eld, Ãwww, such as to satisfy the conditions:

f
�
sssE

i � ÃsssR, Ãwww, yi
�
R0 in V, 8i 2 I�m�: �33�

Proof 1. The proof procedure is similar to that of classical shakedown theory. For the necessity
part of the proof, by hypothesis, let shakedown occur. This implies that, under any ALH, say
Q(t ), tr0, plastic strains stop being produced at a certain time ta, after which the structure responds
elastically to the thermo-mechanical loads in P including the dominant loads. Thus Eq. (33) is satis®ed
with ÃsssR and Ãwww being the actual residual stresses and dual internal variables at t=ta.

The proof of the su�ciency proceeds showing that plastic strains must stop being produced after a
certain time under whatsoever ALH. To this purpose, by hypothesis, let Eq. (33) be satis®ed with some
ÃsssR and Ãwww, and let Q(t ), t r 0 be any ALH, the latter being obtained from Eq. (30) with the time
functions gi(t ) arbitrarily chosen, but Eq. (31) complied with for all tr0. Eqs. (32a) and (32b) give the
related thermo-elastic stress response ssE=ssE(x, t ) and temperature ®eld y=y(x, t ). Due to the
convexity of f, we have:

f �sssE � ÃsssR, Ãwww, y�R
Xm
i�1

gi�t� f
�
sssE

i � ÃsssR, Ãwww, yi
�
R0 in V, 8tr0: �34�

Therefore, denoting by ss, ee, ww,..., the actual response to the considered ALH, by Eq. (11) with the
positions sss 0 � Ãsss: � sssE� ÃsssR, www 0 � Ãwww and y '=y, we can write:

j: � �sssÿ Ãsss�:Çeeep ÿ �wwwÿ Ãwww� � Çxxxr0 in V, 8tr0: �35�

By Eqs. (26a) and (26b), it is

Çeeep � ÇeeeE ÿ Çeeeÿ Eÿ1:� Çsssÿ Ãsss
�
� �36a�

and

�wwwÿ Ãwww� � Çxxx � _wh �36b�
where ÇeeeE is the total strain rate related to ÇsssE and wh is the function:

wh: � C�xxx� ÿC� Ãxxx� ÿ Ãwww � �xxxÿ Ãxxx�r0, �37�
where Ãxxx denotes the internal variables corresponding to Ãwww through Eq. (25b). The nonnegativity of the
function wh Ð devised by Maier (1987) in the framework of shakedown for nonlinarly hardening
material models Ð stems for the assumed convexity of the hardening potential C(xx). Substituting from
Eqs. (36a) and (36b) into Eq. (35) and then integrating the latter over V gives

�
V

j dV �
�
V

�sssÿ Ãsss�:�Çeeeÿ ÇeeeE�dVÿ d

dt

�
V

�
1

2
�sssÿ Ãsss�:Eÿ1:�sssÿ Ãsss� � wh

�
dVr0, �38�

with the equality sign on the r.h. side holding if, and only if, j=0 everywhere in V.
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Considering that the ®rst integral on the r.h. side of Eq. (38) vanishes by the virtual work principle, it
follows that

d

dt

�
V

�
1

2
�sssÿ Ãsss�:Eÿ1:�sssÿ Ãsss� � wh

�
dVR0 8tr0; �39�

that is, the positive de®nite function W(t ), de®ned for all tr0 by

W�t�: �
�
V

�
1

2
�sssÿ Ãsss�:Eÿ1:�sssÿ Ãsss� � wh

�
dV

�����
t

, �40�

turns out to be monotonically decreasing all along the body's inelastic straining process, even if j$ 0
only within a small portion of V. Since W(t ) is bounded from below, a time t1 must exist such that for
all trt1 it is _W�t� � 0, hence j=0 everywhere in V, which means that Eq. (35) is satis®ed as an equality
for trt1, i.e.

�sssÿ Ãsss�:Çeeep ÿ �wwwÿ Ãwww� � Çxxx � 0 in V, 8trt1: �41�
The latter condition can be satis®ed only if Çeeep � 0 and Çxxx � 0, hence _Zp � 0, everywhere in V after t1,

i.e. if shakedown occurs. The proof is so completed q.

Remark 1. The di�erence between the static theorem presented in this section and the analogous one of
Section 2 Ð apart from the internal variables here included Ð consists in the time-free discrete form of
Eq. (33), where the discrete set of dominant loads is considered in place of all ALHs of Eq. (1). This is
rendered possible by the assumed convexity of f.

Remark 2. Specifying the loads and the (relative) temperature to within a scalar multiplier b > 0, such
that ssEi =bssEi and yi=by-i in Eq. (33), the shakedown safety factor, bsh, can be obtained as the maximum
b value for which shakedown occurs, that is, for which the static-type condition (33) is satis®ed.

Remark 3. If Py is empty, but there is a stationary temperature ®eld, y(x), in combination with the loads
QL $PL, it is m=mL and Eq. (32a) reads

sssE�x, t� �
Xm
i�1

gi�t�sssEL
i �x� � sssEy�x� �42�

where sssEL
i and sssEy denote the elastic stress responses to the loads QL

i and to the temperature ®eld y,
respectively. The static shakedown theorem remains unaltered, but Eq. (33) can more precisely be written
as

f �sssEL
i � sssEy � ÃsssR, Ãwww, y�R0 in V, 8i 2 I�m�: �43�
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It is easily recognized that the theorem's proof continues to hold, but the convexity of f with respect to y
is no longer required, as in fact Eq. (34) now takes on the milder form

f �sssEL � sssEy � ÃsssR, Ãwww, y�R
Xm
i�1

gi�t� f �sssEL
i � sssEy � ÃsssR, Ãwww, y�R0 in V, 8tr0: �44�

This means that, in the case of stationary thermal loading, the static shakedown theorem of this section
coincides with that of Section 2 (straightforwardly generalized to include internal variables).

7. Consistent kinematic shakedown theorem

The kinematic shakedown theorem grounds on the concept of Plastic Accumulation Mechanism
(PAM) which generalizes that of kinematically admissible plastic strain rate cycle of Koiter (1960), see
Polizzotto et al. (1991). In essence, such a PAM consists of set of (®ctitious) plastic strain ®elds in one-
to-one correspondence with the set of dominant loads, and resulting into a cumulated strain ®eld that is
self-compatible. In case of polyhedral load domain P with m dominant loads Qi, every PAM will
consist of m such strain ®elds.

In the present context, a PAM includes m plastic strain ®elds, eeepc
i , m internal variable ®elds, xxxci and m

plastic entropy ®elds, Zpc
i , such as to satisfy the homogeneous compatibility conditions:Xm

i�1
eeepci � rsuc in V, uc � 0 on Su �45a�

and Xm
i�1

xxxci � 0 in V: �45b�

No constraints are imposed on the Zpc
i ®elds. Let M denote the set of all PAMs (including the trivial

one), and let M+WM be the subset of (nontrivial) PAMs such that the dominant loads Qi, perform
globally positive work through every such PAM. With these de®nitions in mind, the following can be
proved for the structure of Section 5.

7.1. Consistent kinematic shakedown theorem

A necessary and su�cient condition in order that shakedown occurs in a structure subjected to
thermo-mechanical loads allowed to range within a (convex) polyhedra domain P with dominant loads
Qi, i $ I(m ), is that the inequality

K
�
eeepc
i , xxx

c
i , Z

pc
i

�
: �

�
V

Xm
j�1

�
D
�
eeepc
j , xxx

c
j , Z

pc
j

�
ÿ
h
sssE

j :eee
pc
j � yjZ

pc
j

i�
dVr0 �46�

is satis®ed for every PAM in M.

Proof 2. The proof proceeds in analogy with Polizzotto et al. (1991), with arguments di�erent from
those of Koiter (1960). The necessity is ®rst proved and to this purpose shakedown is assumed to occur.
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Thus, by the static shakedown theorem of Section 6, there must exist some self-stress ®eld, ÃsssR, and a
dual internal variable ®eld, Ãwww, both time-independent, such that Eq. (33) is satis®ed. Then, by absurdity,
let us assume that Eq. (46) is violated; that is, there exists some PAM, say Äeeepc

i ,
Äxxx
c

i , ~Zpc
i , (i= 1, 2,..., m ),

such that the functional K in Eq. (46) takes on a negative value, i.e.

K
h

Äeeepc
i ,

Äxxx
c

i , ~Zpc
i

i
< 0: �47�

Applying the maximum thermo-plastic dissipation theorem (Eq. (11) or Eq. (12)), we can write the
inequality:

D
�

Äeeepc
i ,

Äxxx
c

i , ~Zpc
i

�
r
�
sssE

i � ÃsssR
�
:Äeeepc

i ÿ Ãwww: Äxxx
c

i � yi ~Z
pc
i in V, 8i 2 I�m�: �48�

This, after integration over V and summing with respect to i $ I(m ), transforms into

K
h

Äeeepc
i ,

Äxxx
c

i , ~Zpc
i

i
r
�
V

ÃsssR:
Xm
i�1

Äeeepc
i dVÿ

�
V

Ãwww �
Xm
i�1

Äxxx
c

i dV, �49�

where, by the compatibility conditions (Eqs. (45a) and (45b)) and the virtual work principle, the r.h. side
is recognized to vanish and thus Eq. (49) contradicts the initial assumption in Eq. (47). The conclusion
is that, if shakedown occurs, Eq. (46) cannot be violated by any PAM whatsoever.

To prove the su�ciency, let us assume that Eq. (46) is satis®ed for every PAM. This obviously
amounts to stating that the minimization problem

min K
�
eeepc
i , xxx

c
i , Z

pc
i

�
in the set M of PAMs �50�

has an absolute minimum, as in fact K vanishes for a trivial PAM (but, possibly, also for some
nontrivial one). Because Eq. (50) admits a solution, a solution must possess also the related Euler±
Lagrange equations. The latter equations are easily derived by taking into account the constraints (Eqs.
(45a) and (45b)) and writing the relevant augmented Lagrangian functional, i.e.

Ka � K
�
eeepc
i , xxx

c
i , Z

pc
i

�ÿ �
V

ÃsssR:

 Xm
i�1

eeepc
i ÿ rsuc

!
dV�

�
Su

uc � ÃsssR � n dS�
�
V

Ãwww �
Xm
i�1

xxxci dV, �51�

where n is the unit external normal to S, whereas ÃsssR�x� and Ãwww�x� denote Lagrange multipliers. In the
hypothesis that all the ®eld and boundary functions enjoy the necessary continuity requisites to apply
the classical procedure of the calculus of variations, the ®rst variation of Eq. (51), after some
mathematics including the application of the divergence theorem, reads:

dKa �
�
V

Xm
i�1

deeepc
i :

�
@D

@eeepc
i

ÿ sssE
i ÿ ÃsssR

�
dV�

�
V

Xm
i�1

dxxxci �
�
@D

@xxxci
� Ãwww

�
dV

�
�
V

Xm
i�1

dZpc
i

�
@D

@Zpc
i

ÿ yi

�
dVÿ

�
V

duc � div ÃsssR dV�
�
St

duc � ÃsssR � n dS

ÿ
�
V

d ÃsssR:

 Xm
i�1

eeepc
i ÿ rsuc

!
dV�

�
Su

uc � d ÃsssR � n dS�
�
V

d Ãwww �
Xm
i�1

xxxci dV:

�52�

Therefore, the Euler±Lagrange equations read, beside Eqs. (45a) and (45b):
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sssE
i � ÃsssR � @D

@eeepc
i

, Ãwww � ÿ @D
@xxxci

, yi � @D

@Zpc
i

in V, 8i 2 I�m� �53a�

div ÃsssR � 0 in V, ÃsssR � n � 0 on St: �53b�
In other words, as a consequence of the assumed validity of Eq. (46), there exist some time-

independent self stress and dual internal variable ®elds, namely the Lagrange multipliers ÃsssR and Ãwww, such
that the ®elds on the l.h. side of Eq. (53a), being derived from the (convex) dissipation function D
through (generalized) partial derivatives with respect to the related evolutive variables, are plastically
admissible, i.e. Eq. (33) is satis®ed. Thus, by the static theorem, shakedown occurs. The proof is so
completed q.

Remark 4. The di�erence between the theorem presented in this section and the analogous one of Section 2
Ð apart from the internal variables herein included Ð is twofold. First because of the presence of the
plastic entropy as an additional ingredient; second, because of the time-free discrete form of Eq. (46),
where the discrete set of dominant loads are considered instead of all ALHs. Again, this is rendered
possible by the convexity of f (and thus of D).

Remark 5. Specifying the loads and the temperature variations to within a scalar multiplier b > 0, such
that sssE

i � ÅsssE
i , yi � �yi in Eq. (46), the latter equation reads�

V

Xm
i�1

D
ÿ
eeepc
i , xxx

c
i , Z

pc
i

�
dVrb

�
V

Xm
i�1

h
ÅsssE
i :eee

pc
i � �yiZ

pc
i

i
dV �54�

which holds for any b R bsh. In particular, assuming b=bsh and considering only PAMs in the subset M+,
i.e. PAMs such that�

V

Xm
i�1

h
ÅsssE
i :eee

pc
i � �yiZ

pc
i

i
dV > 0, �55�

Eq. (54) can be rewritten as

bshR
�
V

Xm
i�1

D
ÿ
eeepc
i , xxx

c
i , Z

pc
i

�
dV

,�
V

Xm
i�1

h
ÅsssE
i :eee

pc
i � �yiZ

pc
i

i
dV, �56�

which can be used to compute upper bounds to bsh. Obviously, the minimum value of the ratio on the r.h.
side of Eq. (56) in the subset M+ coincides with bsh, since, otherwise, Eq. (54) would be satis®ed with for
b values greater than bsh.

Remark 6. In the case considered in Remark 3, i.e. the case Py=b, but with a stationary temperature
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®eld, y(x), the above kinematic shakedown theorem simpli®es. In fact, being @f/@y00, the plastic entropy
rate, _Zp, disappears from all equations and Eq. (46) takes on the reduced form:

K
�
eeepc
i , xxx

c
i

�
: �

�
V

Xm
i�1

n
D
ÿ
eeepc
i , xxx

c
i , y

�ÿ sssEL
i :eeepc

i

o
dVr0: �57�

This inequality must be satis®ed for every PAM, a PAM being de®ned as a set of m ®elds �eeepc
i , xxx

c
i �

satisfying Eqs. (45a) and (45b). Note that the integral,�
V

sssEy:

 Xm
i�1

eeepc
i

!
dV � 0, �58�

drops from Eq. (46). The theorem proof can proceed in exact the same way as in the general case, but the
convexity of f with respect to y is no longer required, as in fact the third equality of Eq. (53a) now drops
and D in Eq. (57) is allowed to be nonconvex with respect to y. This means that, in the case of stationary
thermal loading, the kinematic shakedown theorem here proved, coincides with that of Section 2
(straightforwardly extended to internal variable material models). In the considered case, the thermal
loading can be treated as a permanent loading in the search for the shakedown safety factor, bsh, and Eq.
(56) reads

bshR
�
V

Xm
i�1

D
ÿ
eeepc
i , xxx

c
i , y

�
dV

,�
V

Xm
i�1

ÅsssEL
i :eeepc

i dV: �59�

8. Shakedown limit load and related limit state

In this section, for greater generality, the dominant loads and temperature variations are speci®ed as
sssE

i �sssEP� b ÅsssE
i and, yi � y0 � b�yi, 8i $ I(m ), where ssEP is the elastic stress response to a given steady

load P and y0 > 0 is the ambient temperature. For b< bsh, shakedown occurs and the structure is safe.
For b=bsh, shakedown still occurs, but the structure is in a (shakedown) limit state, characterized by an
impending inadaptation (or noninstantaneous plastic ) collapse. The latter exhibits either an incremental
(or ratcheting ) collapse mode (in which the plastic strain increment per cycle is not identically
vanishing), or an alternating plasticity collapse mode (in which the opposite occurs). Knowing the
features of this limit state is paramount in order to assess the kind of collapse mode that takes place in
the structure for b slightly exceeding bsh. The equations governing the shakedown limit state can be
derived by addressing the problem of evaluating the shakedown limit load, i.e. bsh. This task, already
accomplished in the framework of classical shakedown theory by Panzeca and Polizzotto (1988),
Polizzotto et al. (1991) and Polizzotto (1993, 1995), will be pursued in this section.

Using the static shakedown theorem of Section 6, bsh can, in principle, be evaluated solving the
following problem:

bsh � max
�b, ŝR, ŵ�

b, �60a�

subject to:

f
�
sssEP � b ÅsssE

i � ÃsssR, Ãwww, y0 � b�yi
�
R0 in V, 8i 2 I�m�, �60b�
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div ÃsssR � 0 in V, ÃsssR � n � 0 on St: �60c�
Making use of the classical Lagrange multiplier method, let the augmented Lagrangian function be

written as

L � ÿb�
�
V

Xm
i�1

lci f
�

Ãsssi, Ãwww, ŷi
�

dV�
�
V

uc � div ÃsssR dVÿ
�
Su

uc � ÃsssR � n dS, �61�

where the positions Ãsssi: � sssEP� b ÅsssE
i � ÃsssR and ŷ: � y0 � b�yi hold, whereas lci �x�r0, i $ I(m ), and uc(x)

are Lagrange multipliers. The ®rst variation of L, after application of the divergence theorem and with
some re-ordering, reads:

dL � db

"
ÿ 1�

�
V

Xm
i�1

(
ÅsssE
i :
@f

@ Ãsssi
lci � �yi

@ f

@ ŷi
lci

)
dV

#
�
�
V

d ÃsssR:

"Xm
i�1

@ f

@ Ãsssi
lci ÿ rsuc

#
dV

�
�
St

uc � d ÃsssR � n dS�
�
V

d ÃwwwR �
Xm
i�1

@ f

@ Ãwww
lci �

�
V

Xm
i�1

dlci f � Ãsssi, Ãwww, ŷi � dV

�
�
V

duc � div ÃsssR dVÿ
�
Su

duc � ÃsssR � n dS:

�62�

Then, the Euler±Lagrange equations of Eqs. (60a), (60b) and (60c) are, besides Eq. (60c), the
following

f

�
Ãsssi, Ãwww, ŷi

�
R0, lcir0, lci f

�
Ãsssi, Ãwww, ŷi

�
� 0 in V, 8i 2 I�m�; �63a�

Ãsssi: � sssEP � b ÅsssE
i � ÃsssR, ŷi: � y0 � b�yi in V, 8i 2 I�m�; �63b�

eeepc
i : � lci

@f

@ Ãsssi
, ÿ xxxci : � lci

@ f

@ Ãwww
, Zpc

i : � lci
@ f

@ ŷi
in V, 8i 2 I�m�; �63c�

Deeepc �
Xm
i�1

eeepc
i � rsuc in V, uc � 0 on Su; �63d�

Xm
i�1

xxxci � 0 in V �63e�

and

�
V

Xm
i�1

n
ÅsssE
i :eee

pc
i � �yiZ

pc
i

o
� 1: �63f�
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From the latter equations, the meanings of the Lagrange multipliers lci and uc transpire as plastic
coe�cients and displacements respectively.

Eqs. (63a), (63b), (63c), (63d), (63e) and (63f) Ð which express necessary conditions Ð assess, by
Eqs. (63d), (63e) and (63f), the existence of a PAM in the subset M+, complying with the thermo-
plastic constitutive ¯ow laws (Eqs. (63a), (63b) and (63c)). This PAM describes the impending
inadaptation collapse mechanism, which turns out to exhibit a ratchetting mode if uc % 0, or an
alternating plasticity collapse mode if uc00 in V. Furthermore the following can be proved:

1. Eqs. (63a), (63b), (63c), (63d), (63e) and (63f) are not only necessary, but also su�cient conditions for
the problem expressed by Eqs. (60a), (60b) and (60c). In fact, denoting by starred symbols the
solution to Eqs. (63a), (63b), (63c), (63d), (63e) and (63f) and Eq. (60c), on one hand we have that
ÃsssR� and Ãwww� possess the requisites required by the static shakedown theorem, and thus b�R bsh. On
the other hand, the PAM described by Eqs. (63d), (63e) and (63f) can be utilized to compute an
upper bound to bsh through Eq. (56), which now reads

bshR
�
V

Xm
i�1

D
�
eeepc�
i , xxxc

�
i , Z

pc�
i

�
dVÿ

�
V

�
sssEP:Deeepc� � y0DZpc�

�
dV, �64�

where dZpc� � Pm
i�1 Z

pc�
i : But, by Eqs. (63a), (63b) and (63c),

D
ÿ
eeepc�
i , xxxc�i , Zpc�

i

� � �sssEP � b� ÅsssE
i � ÃsssR�

�
:eeepc�

i ÿ Ãwww� � xxxc�i �
ÿ
y0 � b� �yi

�
Zpc�
i , �65�

which, after integration over V and summing with respect to i $ I(m ), reveals that the r.h. side of Eq.
(64) equals b�. Therefore, Eq. (64) reads bsh R b� and, combined with the previous result, it is
necessarily b�=bsh.

2. Eqs. (63a), (63b), (63c), (63d), (63e) and (63f) and Eq. (60c) admit a unique solution for all, except
possibly for ÃsssR and Ãwww in the region(s) of V (if any) where no (®ctitious) plastic strains occur. In fact,
denoting with symbols as (�) ' and (�)0 two solutions, which are assumed to exist, and introducing the
symbol D(�):=(�) 'ÿ(�)0, we can write:

D Ãsssi:Deee
pc
i ÿ D Ãwww � Dxxxci � DŷiDZ

pc
i r0 in V, 8i 2 I�m�: �66�

Noting that (being b '=b0) D Ãsssi�D ÃsssR, Dŷi � 0 everywhere in V and for all i $ I(m ), integration of Eq.
(66) over V and summing with respect to i $ I(m ) yields:

�
V

D ÃsssR:D

 Xm
i�1

eeepc
i

!
dVÿ

�
V

D Ãwww � D
 Xm

i�1
xxxci

!
dVr0: �67�

Both integrals in Eq. (67) vanishing by Eqs. (63d), (63e) and (60c) and by the virtual work
principle, it follows that Eq. (66) is always satis®ed as an equality, i.e.

D ÃsssR:Deeepc
i ÿ D Ãwww � Dxxxci � 0 in V, 8i 2 I�m�: �68�

This identity (remembering Eq. (11) with its consequences) implies that Deeepc
i � 0, Dxxxci � 0, hence

DZpc
i � 0, i.e. eeepc

i 0 � eeepc
i 00, xxxci 0 � xxxci 00 and Zpc

i 0 � Zpc
i 00 everywhere in V, hence uc '=uc0 in V but ÃsssR 0 and

Ãwww 0 may be di�erent from ÃsssR 00 and Ãwww 00, respectively, at points in V where no plastic strains occur in
the impending deformation process.
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The shakedown safety factor, bsh, can also be determined making use of the kinematic shakedown
theorem of Section 7 and, in particular, of Eq. (56). So we can write the problem:

bsh � min
�epc

i
, xci , Z

pc

i
, uc �

�
V

(Xm
i�1

D
ÿ
eeepc
i , xxx

c
i , Z

pc
i

�ÿ sssEP:Deeepc � y0DZpc

)
dV, �69a�

subject to:

�
V

Xm
i�1

�
ÅsssE
i :eee

pc
i � �yiZ

pc
i

�
dV � 1, �69b�

Xm
i�1

eeepc
i � rsuc in V, uc � 0 on Su �69c�

Xm
i�1

xxxci � 0 in V: �69d�

This problem amounts to minimizing the ratio on the r.h. side of Eq. (56) with respect to the subset
of PAMs in M+. It can be easily recognized that the Euler±Lagrange equations of the above problem
coincide with those of Eqs. (60a), (60b) and (60c) and that Eqs. (60a), (60b) and (60c) and Eqs. (69a),
(69b), (69c) and (69d) are the dual of each other, but this point is not further elaborated for simplicity.
Considering that D is not di�erentiable for zero values of its arguments, there exists a computational
convenience in substituting Eqs. (69a), (69b), (69c) and (69d) with the following one:

bÿ1sh � max
�epc

i
, xci , Z

pc
i
, uc �

�
V

Xm
i�1

�
ÅsssE
i :eee

pc
i � �yiZ

pc
i

�
dV, �70a�

subject to:

�
V

Xm
i�1

D
ÿ
eeepc
i , xxx

c
i , Z

pc
i

�
dVÿ

�
V

�
sssEP:Deeepc � y0DZpc

�
dV � 1 plus Eqs: �69c� and �69d � �70b�

see, e.g. Pycko and MroÂ z, 1992; Stumpf and Le, 1991.
The type of collapse mode exhibited by the impending inadaptation collapse of Eqs. (63c), (63d), (63e)

and (63f) depends, for a given structure, on several factors, namely:

1. The shape of the elastic stress domain, Ps, i.e. the polyhedral domain of the stress space, which is
speci®ed by the stress points �sssE

i �x�, 8i $ IsUI(m ), at points x $V.
2. The hardening law in the thermo-plastic constitutive equations.
3. The hardening potential, C(xx), or also the hardening matrix H(xx).

In order to brie¯y discuss this point, let us consider the sum on the l.h. sides of Eqs. (63d) and (63e)
and let them be respectively denoted with Deepc and Dxxc. Using the plastic ¯ow laws in Eq. (63c), we can
write:
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Deeepc �
Xm
i�1

lci
@ f

@ Ãsssi

�
Ãsssi, Ãwww, ŷi

�
in V �71a�

and

ÿDxxxc �
Xm
i�1

lci
@ f

@ Ãwwwi

�
Ãsssi, Ãwww, ŷi

�
� 0 in V: �71b�

In the case of perfect plasticity, only Eq. (71a) is meaningful and both collapse modes are possible in
principle, depending on the shape of the elastic stress response domain Ps (Polizzotto, 1993). For
kinematically hardening materials, it is Dxxc=0, Deepc=0, i.e. the impending collapse mode is always
alternating plasticity. For isotropically hardening materials, there is a pair of internal scalar variables,
say wiso, xiso, with @f/@wiso=ÿ@k/@wiso < 0 and thus, the condition Dxciso � 0 can be satis®ed if, and only
if, all lci coe�cients are identically vanishing, i.e. the limit state is never reached and bsh=1 (Polizzotto
et al., 1991).

Finally, for hardening materials characterized by hardening matrix H(xx) tending to vanish for6xx64
xlim, the dual internal variables tend to become constant with increasing6xx6, i.e.6ww(xx)64 wlim, hence @f/
@ww 4 0, for6xx64 xlim; thus, Dxx

c in Eq. (71b) tends to vanish too, without the vanishing of the lci 's,
such that DDe pc is then allowed to take vanishing or nonvanishing values, and both types of collapse
modes are possible in principle. The latter result may also be achieved by introducing a saturation
surface as in Fuschi and Polizzotto (1998), and Fuschi (1998), but this point is not further discussed
here for brevity.

9. Applications

9.1. Thermoplastic von Mises material models in perfect plasticity

Let us consider the temperature-dependent von Mises yield function of the form

f �
�������
3J2

p
ÿ k0�1ÿ cy2�R0, �72�

where J2 is the second invariant of the deviatoric stress, ss', (i.e. J2=1/2ss': ss'), c > 0 and k0 are given
constants. For any assigned deformation mechanism, �Çeeep, _Zp), by Eqs. (8a), (8b) and (9), we obtain Ð
dropping the procedural details for brevity Ð the relevant thermoplastic dissipation function as

D � k0�e
� p � 1

4ck0�e
� p _Zp2, �73�

where, by de®nition,

�e
� p �

��������������
2

3
Çeeep:Çeeep

r
: �74�

The above equations can be particularized to the case of one-dimensional stress state, obtaining:

f � jsj ÿ k0�1ÿ cy2�R0 �75�
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and

D � k0j_epj � _Zp2

4ck0j_epj : �76�

9.2. Two-bar system subjected to cycles of temperature variation

The system of Fig. 1(a) is composed of two elastic, perfectly plastic bars and a lower rigid block. Bar
#1, of cross section A, is maintained at constant temperature y(1)=y0; whereas bar #2, of cross section
2A is subjected to cycles of temperature variations, y�2� � y0 � �ym (0 R m R 1), as shown in Fig. 1(b). A
steady load P � a �P is applied on the rigid block, where �P � 3Ak0 is the plastic collapse load and k0 is
the yield stress at temperature y=0. The material model is described by Eqs. (75) and (76). With the
de®nitions of Section 5, PL is empty, whereas Py coincides with the segment 0 R mR 1, and m turns out
to be the single component of vector Qy, i.e. Qy

1 � m: There are, thus, two dominant temperature
variations, i.e.

y�1�1 ÿ y0 � 0, y�2�1 ÿ y0 � �yb � k0
aE

b for m � 1 �77a�

and

y�1�2 ÿ y0 � y�2�2 ÿ y0 � 0 for m � 0, �77b�

Fig. 1. Two-bar system subjected to a ®xed mechanical load and to cyclically varying thermal loading: (a) Geometrical and loading

scheme. (b) Temperature history in the two bars.
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where �y � k0=aE is assumed to be the reference temperature variations, a is the thermal expansion
coe�cient (by hypothesis, temperature independent) and E is Young modulus. The elastic stress
responses to the dominant thermal loads for b=1 are

�sE�1�1 � Ea�y � k0, �sE�2�1 � ÿ
k0
2

for m � 1 �78a�

and

�sE�1�2 � �sE�2�2 � 0; for m � 0 �78b�

whereas the elastic stress response to the steady load �P is: �sEP�1� � 3k0=2 and �sEP�2� � �sEP�1� =2: Also, the yield
stress turns out to be constant in bar #1, i.e.

sy�1� � sy0 � k0c0, c0 � 1ÿ cy20R1, �79�

where sy0 denotes the yield stress at temperature y0, but it is variable in bar #2, i.e.

sy0rsy�2�rsy�, �80�

where sy� denotes the yield stress at the maximum temperature, y0 � �yb, i.e.

sy� � k0

h
1ÿ c

ÿ
y0 � �yb

�2i � k0
ÿ
c0 ÿ 2c1bÿ c2b

2
�
, �81�

where, by de®nition,

c1 � c�yy0, c2 � c�y
2
: �82�

The interaction Bree-like diagram of the (a, b )-plane is shown in Fig. 2(a), where BS is the
(elastic) shakedown> zone, BF the reverse plasticity (or plastic shakedown) zone, and BR the ratchetting
zone. This diagram has been obtained by the so-called direct method (Polizzotto, 1994), illustrated
by Fig. 2(b±c). Note that, on superposition of the self-stresses r(1)=k0b/2 and r(2)=ÿr(1) to the
elastic stresses sE�1� � k0bm and sE�2� � sE�1�=2, respectively, one obtains the so-called post-transient stresses,
i.e. ŝ�1� � k0b�mÿ 1=2� and ŝ�2� � ÿs�1�=2: These describe the elastic stress paths Ŝ�1� and Ŝ�2�,
respectively, both of which are in a neutral con®guration, i.e. symmetrically located with respect
to the stress origin, Fig. 2(b,e). For b < 2c0, one has to consider the stress state of Fig. 2(b), where
both bars possess the reduced plastic resistance k0c0 for positive axial forces and, respectively, k0c0
and k0(c0ÿ2c1bÿc2b 2) for negative axial forces. Thus, the plastic collapse load of the system turns out
to be:

a �P � Ak0

�
c0 ÿ b

2

�
� 2Ak0

�
c0 ÿ b

4

�
for a > 0 �83a�

and

ÿa �P � Ak0

�
c0 ÿ b

2

�
� 2Ak0

�
c0 ÿ 2c1bÿ c2b

2 ÿ b
4

�
for a < 0 �83b�
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Fig. 2. Steady response of the two-bar system of Fig. 1. (a) Bree-like interaction diagram: Elastic shakedown domain,

BS={RTT 'R '}; Alternating plasticity domain, BF={TT 'Q }; Ratchetting domain, BR={RTQ } and {R 'T 'QQ '}. (b±e) Stress paths

for the direct location of the shakedown domain.
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from where, since �P � 3k0A, one obtains the equations

a � c0 ÿ b
3
�a > 0� �84a�

and

ÿa � c0 ÿ �1� 4c1�b
3
ÿ 2c2

b2

3
�a < 0� �84b�

which are respectively represented by lines RT and R 'T ' in Fig. 2(a). The zone RTT 'R 'R is the BS zone.
For b> 2c0, one has to consider the stress state sketched in Fig. 2(c), where the resistance of bar #1

has been exceeded. For m=1, bar #1, works in traction at its reduced limit k0c0, whereas bar #2 works
in compression below its reduced negative limit +k0(c0ÿ2c1bÿc2b 2). Thus, moving the elastic stress
path Ŝ�1� downwards to Ŝ

�
�1� through a shift (b/2ÿc0), such that the upper end of Ŝ

�
�1� is at the positive

reduced limit k0c0, Fig. 2(d), the elastic stress path Ŝ�2� will correspondingly move upward by (b/2ÿc0)/2
and bar #2 will exhibit a remaining negative plastic resistance as k0[(c0ÿ2c1bÿc2b 2)+(b/2ÿc0)/2]. Then,
the plastic collapse load of the system is

ÿa �P � 2Ak0

�
c0 ÿ 2c1bÿ c2b

2 �
�
b
2
ÿ c0

�
=2ÿ b

4

�
, �85�

from which the equation follows

ÿa � c0
3
ÿ 4c1

b
3
ÿ 2c2

b2

3
, �86�

which is represented by the line T 'Q of Fig. 2(a). Analogously, for m=0, bar #1 works in compression
at its negative reduced limit k0c0, whereas bar #2 works in traction below its positive reduced limit k0c0.
Thus, moving the elastic stress path Ŝ�1� upwards to Ŝ

�
�1�, Fig. 2(e), and Ŝ�2� downwards to Ŝ

�
�2�, the

positive plastic collapse load can be computed:

a �P � 2Ak0

�
c0 �

�
b
2
ÿ c0

�
=2ÿ b

4

�
; �87�

where follows the equation

a � c0
3

�88�

which is represented by line TQ of Fig. 2(a). Point Q is the intersection point of Eqs. (88) and (90) and
its location bL is speci®ed by the temperature variation amplitude for which sy�=0, i.e.

bL �
1ÿ ���

c
p

y0�����
c2
p �

�������������
1ÿ c0
p � c0 ÿ 1

c1
: �89�

The diagram is bounded, from above, by the line b=bL and laterally by the plastic resistance curves,
RQ and R 'Q ', the equations of which are easily found to be

2a � c0 ÿ 4c1
b
3
ÿ 2c2

b2

3
: �90�

The area TQT ' is the reverse plasticity (or plastic shakedown) zone BF, whereas the ratchetting zone
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BR is represented by the areas RTQR and R 'T 'QQ 'R '. The shape of the diagram of Fig. 2(a) depends
on the actual value of the material parameters c0, c1 and c2; the values c0=0.995, c1=0.02 and c2=0.08
have been adopted in Fig. 2(a) (obtained for y0=508C, �y � 2008C, c = 2 � 10ÿ6k0=16.55 MPa). Note
that the case c2=0 implies that k0 41, c0 4 0, y0 41, but k0c0=sy0 and 2k0c1 4 Ksy0. Thus, Eq.
(91) yields

bL �
�����������������k0 ÿ sy0
p � sy0 ÿ k0

k0c1
' sy0

2k0c1
� 1

K
, �91�

which coincides with the result given by Polizzotto (1994) for the case of yield stress being linearly
dependent on the temperature variation.

Using Eq. (56), but modi®ed according to Eqs. (65) and (63f), upper bound to bsh (i.e. the shakedown
boundary RTT 'R ' of Fig. 2(a)) can be obtained using the kinematic theorem. With the notation, D�k�i�
D�epc
�k�i, Z

pc
�k�i �, we can write the ratio:

b1 �
D�1�1 �D�1�2 � 4D�2�1 � 4D�2�2 ÿ 3ak0u=Lÿ y0

�
DZpc
�1� � 4DZpc

�2�
�

k0e
pc
�1�1 ÿ 2k0e

pc
�2�1 � 4�yZpc

�2�1
, �92�

where

epc
�1�1 � epc

�1�2 �
u

L

and

epc
�2�1 � epc

�2�2 �
u

2L
: �93�

Considering a ratchetting collapse mode with u>0, we have epc
�1�2 � epc

�2�1 � 0 and Zpc
�1�2 � Zpc

�2�1 � 0, such
that Eq. (92), by Eq. (93), becomes

b1 �
D�1�1 � 4D�2�2

k0u=L
ÿ 3aÿ

y0
�
Zpc
�1�1 � 4Zpc

�2�2
�

k0u=L

� 3�1ÿ a� � Zpc2
�1�1

4ck20�u=L�2
� 4Zpc2

�2�2
4ck20�u=L��u=2L�

ÿ
y0
�
Zpc
�1�1 � 4Zpc

�2�2
�

k0u=L

� 3�c0 ÿ a� � c

 
Zpc
�1�1

4ck0u=L
ÿ y0

!2

�2c
 

Zpc
�2�2

4ck0 u=2L
ÿ y0

!2

�94�

and thus

b1r3�c0 ÿ a�: �95�
Considering an alternating plasticity mode i.e. u=0, Eq. (92) reads:

Z2 �
2D�1�1 � 8D�2�1 ÿ y0

�
DZpc
�1� � DZpc

�2�
�

k0e
pc
�1�1 ÿ 2k0e

pc
�2�1 � 4�yZpc

�2�1
, �96�
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which takes a smaller value if epc
�2�1 � Zpc

�2�1 � 0; that is, using Eq. (76) with epc
�1�1 > 0 and Zpc

�1�2 � Zpc
�1�1, we

have

Z2 � 2� 2Zpc2
�1�1

4ck20
�
epc
�1�1
�2 ÿ 2y0Z

pc
�1�1

k0e
pc
�1�1
� 2c0 � 2cy20 �

2cZpc2
�1�1�

2ck0e
pc
�1�1
�2 ÿ 4cy0Z

pc
�1�1

2ck0e
pc
�1�1

� 2c0 � 2c

 
Zpc
�1�1

2ck0e
pc
�1�1
ÿ y0

!2

, �97�

that is

Z2r2c0: �98�

10. Review and conclusion

The shakedown problem for materials with temperature dependent yield functions has been addressed
in this paper with the purpose to remedy some de®ciencies exhibited by the existing static and kinematic
theorems when applied to the case of thermal loading (possibly combined with mechanical loading).
This goal has been reached by assuming the yield function convex in the stress±temperature space and
by restating the shakedown theorems within the framework of a more re®ned thermo-plasticity theory in
which temperature and plastic entropy rate play the role of additional state and evolutive variables.

Grounded on the idea that (total) entropy is the sum of the reversible part (i.e. entering the state
equations) and on irreversible (or plastic) part (i.e. entering the evolutive equations), thermodynamic
arguments have been developed in the hypothesis of small strains and internal variables to provide a
®rm rational basis to the above thermo-plasticity theory. In particular, the second thermodynamics
principle has led to the concept of intrinsic thermo-mechanical dissipation density, which is the sum of a
mechanical part (attached to the plastic strain and internal variables rates), and of a thermal part
(attached to the plastic entropy rate). A maximum intrinsic thermo-plastic dissipation theorem,
extension of the classical one to the present context, has been shown to characterize the relevant
thermo-plasticity ¯ow laws.

In the hypothesis of negligible thermo-mechanical coupling e�ects, a polyhedral load/temperature
domain has been considered in order to formulate the two shakedown theorems with suitable discrete
forms in which the so-called dominant (or basic) load/temperature conditions are involved, what is
rendered possible by the (full) convexity of the yield function. Both necessary and su�cient conditions
have been proved for the two theorems, showing that both of them provide dual lower and upper
bound statements for the shakedown safety factor. This is in contrast to the existing shakedown
theorems, which are nevertheless recovered whenever there is a stationary temperature ®eld to consider
as a permanent loading combined with time-variable mechanical loads, since in fact in this case all terms
containing plastic entropy drop from the extended formulation.

The static and kinematic approaches to the problem for the evaluation of the shakedown safety factor
have been shown to save their classical formats, but the kinematic approach is based on plastic
accumulation mechanisms that include Ð beside plastic strain and kinematic internal variable ®elds Ð
plastic entropy ®elds. The shakedown limit state, i.e. the state of the structure caused by the shakedown
limit load, has been shown to be characterized, among other, by the impending noninstantaneous plastic
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(or inadaptation) collapse mechanism which is about to establish in the structure under loadings slightly
exceeding the shakedown limit.
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